Reg. No.:

Name:

Third Semester B.Tech. Degree Examination, January 2015 (2008 Scheme)

08.306 : DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions.

- 1. Convert the number (F3CA)₁₆ to binary and octal.
- 2. Simplify $Y = \overline{(AB + \overline{C})(\overline{A + B} + C)}$
- Differentiate between static and dynamic RAM.
- 4. Write down the features of combinational circuits.
- 5. Write down the applications of flipflops.
- 6. Compare synchronous and asynchronous sequential circuits.
- 7. Explain how a JK flipflop is converted into a T flipflop.
- 8. What are races and cycles? Give examples.
- 9. Draw the circuit to produce a static 1 hazard.
- 10. Differentiate between state equation and characteristic equation. (10×4=40 Marks)

PART-B

Answer any two questions from each Module.

Module - I

- 11. Realize the operation of a full adder using 3×8 decoder.
- 12. Simplify the following Boolean expression by Quine-Mcluskey method.
 - $f = \sum_{m} (0, 1, 3, 7, 8, 9, 11, 15)$. Verify the result using Karnaugh map.
- Implement a 16:1 MUX using two 8:1 MUX.

Module - II

- Design and draw the circuit of a 4 bit twisted ring counter. Draw the waveforms also.
- 15. Design and draw the circuit of a random sequence generator for 3, 4, 1, 7, 8, 6 ---
- 16. Explain the monostable operation using IC 74123, draw the waveforms also.

Module - III

- 17. a) Explain the Moore and Mealy notation in JK flipflop.
 - b) Differentiate between static and dynamic hazard.
- Design a sequence detector to detect the beginning of a message. The detector produces an output 1, when the sequence 1101 is detected. Use any flipflop for realization.
- 19. Write notes on:
 - i) State Assignment Techniques
 - ii) State equivalence
 - iii) State reduction
 - iv) State machine notation.

(20×3=60 Marks)